Glossary
Allotropes
Some elements exist in several different structural forms, called allotropes. Each allotrope has different physical properties.
For more information on the Visual Elements image see the Uses and properties section below.
Glossary
Group
A vertical column in the periodic table. Members of a group typically have similar properties and electron configurations in their outer shell.
Period
A horizontal row in the periodic table. The atomic number of each element increases by one, reading from left to right.
Block
Elements are organised into blocks by the orbital type in which the outer electrons are found. These blocks are named for the characteristic spectra they produce: sharp (s), principal (p), diffuse (d), and fundamental (f).
Atomic number
The number of protons in an atom.
Electron configuration
The arrangements of electrons above the last (closed shell) noble gas.
Melting point
The temperature at which the solid–liquid phase change occurs.
Boiling point
The temperature at which the liquid–gas phase change occurs.
Sublimation
The transition of a substance directly from the solid to the gas phase without passing through a liquid phase.
Density (g cm−3)
Density is the mass of a substance that would fill 1 cm3 at room temperature.
Relative atomic mass
The mass of an atom relative to that of carbon-12. This is approximately the sum of the number of protons and neutrons in the nucleus. Where more than one isotope exists, the value given is the abundance weighted average.
Isotopes
Atoms of the same element with different numbers of neutrons.
CAS number
The Chemical Abstracts Service registry number is a unique identifier of a particular chemical, designed to prevent confusion arising from different languages and naming systems.
Group | 13 | Melting point | 660.323°C, 1220.581°F, 933.473 K |
Period | 3 | Boiling point | 2519°C, 4566°F, 2792 K |
Block | p | Density (g cm−3) | 2.70 |
Atomic number | 13 | Relative atomic mass | 26.982 |
State at 20°C | Solid | Key isotopes | 27Al |
Electron configuration | [Ne] 3s23p1 | CAS number | 7429-90-5 |
ChemSpider ID | 4514248 | ChemSpider is a free chemical structure database |
Glossary
Image explanation
Murray Robertson is the artist behind the images which make up Visual Elements. This is where the artist explains his interpretation of the element and the science behind the picture.
Appearance
The description of the element in its natural form.
Biological role
The role of the element in humans, animals and plants.
Natural abundance
Where the element is most commonly found in nature, and how it is sourced commercially.
History
History
Atomic radius, non-bonded
Half of the distance between two unbonded atoms of the same element when the electrostatic forces are balanced. These values were determined using several different methods.
Covalent radius
Half of the distance between two atoms within a single covalent bond. Values are given for typical oxidation number and coordination.
Electron affinity
The energy released when an electron is added to the neutral atom and a negative ion is formed.
Electronegativity (Pauling scale)
The tendency of an atom to attract electrons towards itself, expressed on a relative scale.
First ionisation energy
The minimum energy required to remove an electron from a neutral atom in its ground state.
Glossary
Common oxidation states
The oxidation state of an atom is a measure of the degree of oxidation of an atom. It is defined as being the charge that an atom would have if all bonds were ionic. Uncombined elements have an oxidation state of 0. The sum of the oxidation states within a compound or ion must equal the overall charge.
Isotopes
Atoms of the same element with different numbers of neutrons.
Key for isotopes
Half life | ||
---|---|---|
y | years | |
d | days | |
h | hours | |
m | minutes | |
s | seconds | |
Mode of decay | ||
α | alpha particle emission | |
β | negative beta (electron) emission | |
β+ | positron emission | |
EC | orbital electron capture | |
sf | spontaneous fission | |
ββ | double beta emission | |
ECEC | double orbital electron capture |
Glossary
Data for this section been provided by the British Geological Survey.
Relative supply risk
An integrated supply risk index from 1 (very low risk) to 10 (very high risk). This is calculated by combining the scores for crustal abundance, reserve distribution, production concentration, substitutability, recycling rate and political stability scores.
Crustal abundance (ppm)
The number of atoms of the element per 1 million atoms of the Earth’s crust.
Recycling rate
The percentage of a commodity which is recycled. A higher recycling rate may reduce risk to supply.
Substitutability
The availability of suitable substitutes for a given commodity.
High = substitution not possible or very difficult.
Medium = substitution is possible but there may be an economic and/or performance impact
Low = substitution is possible with little or no economic and/or performance impact
Production concentration
The percentage of an element produced in the top producing country. The higher the value, the larger risk there is to supply.
Reserve distribution
The percentage of the world reserves located in the country with the largest reserves. The higher the value, the larger risk there is to supply.
Political stability of top producer
A percentile rank for the political stability of the top producing country, derived from World Bank governance indicators.
Political stability of top reserve holder
A percentile rank for the political stability of the country with the largest reserves, derived from World Bank governance indicators.
|
|
Glossary
Specific heat capacity (J kg−1 K−1)
Specific heat capacity is the amount of energy needed to change the temperature of a kilogram of a substance by 1 K.
Young's modulus
A measure of the stiffness of a substance. It provides a measure of how difficult it is to extend a material, with a value given by the ratio of tensile strength to tensile strain.
Shear modulus
A measure of how difficult it is to deform a material. It is given by the ratio of the shear stress to the shear strain.
Bulk modulus
A measure of how difficult it is to compress a substance. It is given by the ratio of the pressure on a body to the fractional decrease in volume.
Vapour pressure
A measure of the propensity of a substance to evaporate. It is defined as the equilibrium pressure exerted by the gas produced above a substance in a closed system.
Specific heat capacity (J kg−1 K−1) |
897 | Young's modulus (GPa) | 70.3 | |||||||||||
Shear modulus (GPa) | 26.1 | Bulk modulus (GPa) | 75.5 | |||||||||||
Vapour pressure | ||||||||||||||
Temperature (K) |
|
|||||||||||||
Pressure (Pa) |
|
Podcasts
Podcasts
Listen to Aluminium Podcast |
Transcript :
Chemistry in its element: aluminium (Promo) You're listening to Chemistry in its element brought to you by Chemistry World, the magazine of the Royal Society of Chemistry. (End promo) Chris Smith This week the chemical cause of transatlantic linguistic friction. Is it an um or an ium at the end? It turns out us Brits might have egg on our faces as well as a liberal smattering of what we call aluminium. Kira J. Weissman 'I feel like I'm trapped in a tin box at 39000 feet'. It's a common refrain of the flying-phobic, but maybe they would find comfort in knowing that the box is actually made of aluminium - more than 66000 kg of it, if they're sitting in a jumbo jet. While lamenting one's presence in an 'aluminium box' doesn't have quite the same ring, there are several good reasons to appreciate this choice of material. Pure aluminium is soft. However, alloying it with elements such as such as copper, magnesium, and zinc, dramatically boosts its strength while leaving it lightweight, obviously an asset when fighting against gravity. The resulting alloys, sometimes more malleable than aluminium itself, can be moulded into a variety of shapes, including the aerodynamic arc of a plane's wings, or its tubular fuselage. And whereas iron rusts away when exposed to the elements, aluminium forms a microscopically thin oxide layer, protecting its surface from further corrosion. With this hefty CV, it's not surprising to find aluminium in many other vehicles, including ships, cars, trucks, trains and bicycles. Happily for the transportation industry, nature has blessed us with vast quantities of aluminium. The most abundant metal in the earth's crust, it's literally everywhere. Yet aluminium remained undiscovered until 1808, as it's bound up with oxygen and silicon into hundreds of different minerals, never appearing naturally in its metallic form. Sir Humphrey Davy, the Cornish chemist who discovered the metal, called it 'aluminum', after one of its source compounds, alum. Shortly after, however, the International Union of Pure and Applied Chemistry (or IUPAC) stepped in, standardizing the suffix to the more conventional 'ium'. In a further twist to the nomenclature story, the American Chemical Society resurrected the original spelling in 1925, and so ironically it is the Americans and not the British that pronounce the element's name as Davy intended. In 1825, the honour of isolating aluminium for the first time fell to the Danish Scientist Hans Christian Øersted. He reportedly said of his prize, 'It forms a lump of metal that resembles tin in colour and sheen" - not an overly flattering description, but possibly an explanation for airline passengers' present confusion. The difficulty of ripping aluminium from its oxides - for all early processes yielded only kilogram quantities at best - ensured its temporary status as a precious metal, more valuable even than gold. In fact, an aluminium bar held pride of place alongside the Crown Jewels at the 1855 Paris Exhibition, while Napoleon is said to have reserved aluminium tableware for only his most honoured guests. It wasn't until 1886 that Charles Martin Hall, an uncommonly dogged, amateur scientist of 22, developed the first economic means for extracting aluminium. Working in a woodshed with his older sister as assistant, he dissolved aluminium oxide in a bath of molten sodium hexafluoroaluminate (more commonly known as 'cryolite'), and then pried the aluminium and oxygen apart using a strong electrical current. Remarkably, another 22 year-old, the Frenchman Paul Louis Toussaint Héroult, discovered exactly the same electrolytic technique at almost exactly the same time, provoking a transatlantic patent race. Their legacy, enshrined as the Hall-Héroult process, remains the primary method for producing aluminium on a commercial scale - currently million of tons every year from aluminium's most plentiful ore, bauxite. It wasn't only the transportation industry that grasped aluminium's advantages. By the early 1900s, aluminium had already supplanted copper in electrical power lines, its flexibility, light weight and low cost more than compensating for its poorer conductivity. Aluminium alloys are a construction favourite, finding use in cladding, windows, gutters, door frames and roofing, but are just as likely to turn up inside the home: in appliances, pots and pans, utensils, TV aerials, and furniture. As a thin foil, aluminium is a packaging material par excellence, flexible and durable, impermeable to water, and resistant to chemical attack - in short, ideal for protecting a life-saving medication or your favourite candy bar. But perhaps aluminium's most recognizable incarnation is the aluminium beverage can, hundreds of billions of which are produced annually. Each can's naturally glossy surface makes as an attractive backdrop for the product name, and while its thin walls can withstand up to 90 pounds of pressure per square inch (three times that in a typical car tyre), the contents can be easily accessed with a simple pull on the tab. And although aluminium refining gobbles up a large chunk of global electricity, aluminium cans can be recycled economically and repeatedly, each time saving almost 95% of the energy required to smelt the metal in the first place. There is, however, a darker side to this shiny metal. Despite its abundance in Nature, aluminium is not known to serve any useful purpose for living cells. Yet in its soluble, +3 form, aluminium is toxic to plants. Release of Al3+ from its minerals is accelerated in the acidic soils which comprise almost half of arable land on the planet, making aluminium a major culprit in reducing crop yields. Humans don't require aluminium, and yet it enters our bodies every day - it's in the air we breathe, the water we drink, and the food we eat. While small amounts of aluminium are normally present in foods, we are responsible for the major sources of dietary aluminium: food additives, such as leavening, emulsifying and colouring agents. Swallowing over-the-counter antacids can raise intake levels by several thousand-fold. And many of us apply aluminium-containing deodorants directly to our skin every day. What's worrying about all this is that several studies have implicated aluminium as a risk factor for both breast cancer and Alzheimer's disease. While most experts remain unconvinced by the evidence, aluminium at high concentrations is a proven neurotoxin, primarily effecting bone and brain. So, until more research is done, the jury will remain out. Now, perhaps that IS something to trouble your mind on your next long haul flight. Chris Smith Researcher Kira Weissman from Saarland University in Saarbruken, Germany with the story of Aluminium and why I haven't been saying it in the way that Humphrey David intended. Next week, talking of the way the elements sound, what about this one. Brian Clegg There aren't many elements with names that are onomatopoeic. Say oxygen or iodine and there is no clue in the sound of the word to the nature of the element, but zinc is different - zinc, zinc, zinc, you can almost hear a set of coins falling into an old fashioned bath. It just has to be a hard metal. In use, zinc is often hidden away, almost secretive. It stops iron rusting, sooths sunburn, keeps dandruff at bay, combines with copper to make a very familiar gold coloured alloy and keeps us alive but we hardly notice it. Chris Smith And you can catch up with the clink of zinc with Brian Clegg on next week's Chemistry in its element. I'm Chris Smith, thank you for listening and goodbye. (Promo) Chemistry in its element is brought to you by the Royal Society of Chemistry and produced by thenakedscientists.com. There's more information and other episodes of Chemistry in its element on our website at chemistryworld.org/elements. (End promo)
|
Resources
Resources
Terms & Conditions
Images © Murray Robertson 1999-2011
Text © The Royal Society of Chemistry 1999-2011
Welcome to "A Visual Interpretation of The Table of Elements", the most striking version of the periodic table on the web. This Site has been carefully prepared for your visit, and we ask you to honour and agree to the following terms and conditions when using this Site.
Copyright of and ownership in the Images reside with Murray Robertson. The RSC has been granted the sole and exclusive right and licence to produce, publish and further license the Images.
The RSC maintains this Site for your information, education, communication, and personal entertainment. You may browse, download or print out one copy of the material displayed on the Site for your personal, non-commercial, non-public use, but you must retain all copyright and other proprietary notices contained on the materials. You may not further copy, alter, distribute or otherwise use any of the materials from this Site without the advance, written consent of the RSC. The images may not be posted on any website, shared in any disc library, image storage mechanism, network system or similar arrangement. Pornographic, defamatory, libellous, scandalous, fraudulent, immoral, infringing or otherwise unlawful use of the Images is, of course, prohibited.
If you wish to use the Images in a manner not permitted by these terms and conditions please contact the Publishing Services Department by email. If you are in any doubt, please ask.
Commercial use of the Images will be charged at a rate based on the particular use, prices on application. In such cases we would ask you to sign a Visual Elements licence agreement, tailored to the specific use you propose.
The RSC makes no representations whatsoever about the suitability of the information contained in the documents and related graphics published on this Site for any purpose. All such documents and related graphics are provided "as is" without any representation or endorsement made and warranty of any kind, whether expressed or implied, including but not limited to the implied warranties of fitness for a particular purpose, non-infringement, compatibility, security and accuracy.
In no event shall the RSC be liable for any damages including, without limitation, indirect or consequential damages, or any damages whatsoever arising from use or loss of use, data or profits, whether in action of contract, negligence or other tortious action, arising out of or in connection with the use of the material available from this Site. Nor shall the RSC be in any event liable for any damage to your computer equipment or software which may occur on account of your access to or use of the Site, or your downloading of materials, data, text, software, or images from the Site, whether caused by a virus, bug or otherwise.
We hope that you enjoy your visit to this Site. We welcome your feedback.
© Murray Robertson 1998-2017.
Data
W. M. Haynes, ed., CRC Handbook of Chemistry and Physics, CRC Press/Taylor and Francis, Boca Raton, FL, 95th Edition, Internet Version 2015, accessed December 2014.
Tables of Physical & Chemical Constants, Kaye & Laby Online, 16th edition, 1995. Version 1.0 (2005), accessed December 2014.
J. S. Coursey, D. J. Schwab, J. J. Tsai, and R. A. Dragoset, Atomic Weights and Isotopic Compositions (version 4.1), 2015, National Institute of Standards and Technology, Gaithersburg, MD, accessed November 2016.
T. L. Cottrell, The Strengths of Chemical Bonds, Butterworth, London, 1954.
Uses and properties
John Emsley, Nature’s Building Blocks: An A-Z Guide to the Elements, Oxford University Press, New York, 2nd Edition, 2011.
Thomas Jefferson National Accelerator Facility - Office of Science Education, It’s Elemental - The Periodic Table of Elements, accessed December 2014.
Periodic Table of Videos, accessed December 2014.
Supply risk data
Derived in part from material provided by the British Geological Survey © NERC.
History text
Elements 1-112, 114, 116 and 117 © John Emsley 2012. Elements 113, 115, 117 and 118 © Royal Society of Chemistry 2017.
Podcasts
Produced by The Naked Scientists.
Periodic Table of Videos
Created by video journalist Brady Haran working with chemists at The University of Nottingham.