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ABSTRACT
Police departments around the world have been experimenting
with forms of place-based data-driven proactive policing for over
two decades. Modern incarnations of such systems are commonly
known as hot spot predictive policing. These systems predict where
future crime is likely to concentrate such that police can allocate
patrols to these areas and deter crime before it occurs. Previous
research on fairness in predictive policing has concentrated on the
feedback loops which occur when models are trained on discov-
ered crime data, but has limited implications for models trained
on victim crime reporting data. We demonstrate how differential
victim crime reporting rates across geographical areas can lead to
outcome disparities in common crime hot spot prediction models.
Our analysis is based on a simulation1 patterned after district-level
victimization and crime reporting survey data for Bogotá, Colombia.
Our results suggest that differential crime reporting rates can lead
to a displacement of predicted hotspots from high crime but low
reporting areas to high or medium crime and high reporting areas.
This may lead to misallocations both in the form of over-policing
and under-policing.
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1 INTRODUCTION
Police departments around the world have been experimenting
with computer-aided place-based predictive policing systems for
over two decades. In a 1998 National Institute of Justice survey,
36% of police agencies employing over 100 sworn officers reported
having the computing capability and data infrastructure to digitally
generate crimemaps [34]. Just a few years later, over 70% of agencies
reported using such maps to identify crime hot spots as part of a
broader adoption of CompStat approaches to policing [52]. More
1Code available at https://github.com/nakpinar/diff-crime-reporting.git.
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modern incarnations of predictive policing date back to 2008, when
the Los Angeles Police Department (LAPD) began its explorations
of these systems, followed shortly thereafter by efforts such as the
New York Police Department’s use of tools developed by firms
including Azavea, KeyStats and PredPol (2012+). Far from being a
US-centric phenomenon, such systems are widely used throughout
Europe, the UK, and China [2, 31, 49].

More recently, predictive policing systems have come under
scrutiny due to their lack of transparency [53] and concerns that
they may lead to further over-policing of minority communities
by virtue of being trained on biased or “dirty” data [19, 33, 45].
Critics commonly point to the possibility that such systems may
produce dangerous feedback loops, vicious cycles wherein data on
recent arrests is used to deploy police in still greater numbers to
neighbourhoods where they zealously seek out suspicious activity
and conduct even more arrests. Recent work by Lum and Isaac
[33] and Ensign et al. [19] has demonstrated both empirically and
theoretically how such feedback loops can arise.

Proponents and developers of predictive policing technologies
have argued that such analyses are based on models of crime and
policing that do not accurately reflect the types of data used as
inputs to such systems, nor the types of crime that they seek to pre-
dict. The analysis of Lum and Isaac [33], for instance, convincingly
demonstrates how using data on drug arrests in Oakland, CA as
inputs to a self-exciting point process (SEPP) model of the kind used
in PredPol would result in high concentrations of policing in racial
and ethnic minority neighbourhoods. Yet PredPol has stated that
they do not use data on drug-related offenses (or traffic citations)
in generating their predictions, nor do they use data on arrests [42].
Azavea, the creators and former owners of the HunchLab prod-
uct, likewise note that their models focus on property and violent
crimes, and the crime data they use is based on victim reporting
rather than arrests [11].

Secondly, proponents and developers have argued that prior
studies incorrectly assume that targeted policing strategies lead
to an escalation in crime detection and, correspondingly, arrests.
However, the adoption of hot spot policing strategies is predicated
on an anticipated deterrence effect. Studies of the impacts of pre-
dictive policing on property and violent crimes and on arrests at
targeted locations have produced mixed results. A 2014 analysis of
a randomized controlled experiment (RCT) conducted by RAND
in Shreveport, Louisiana found no statistical evidence of crime re-
duction in the prediction-targeted locations compared to control
locations [30]. Another RCT conducted in Pittsburgh reported a
34% drop in serious violent crime in “temporary hot spots” and a
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24% drop in “chronic hot spots” [20]. This study found no evidence
of crime displacement to nearby locations, and reported that a total
of 4 arrests took place during the experiment’s 20,000 hot spot
patrols. A peer-reviewed study published by researchers affiliated
with PredPol concluded that, while arrests were higher at predicted
locations, they were lower or comparable once the counts were ad-
justed for differences in crime rate [9]. PredPol has reported crime
drops ranging from 8-30% depending on the jurisdiction and type
of crime [43]. While none of these counterarguments establish (or
even claim) that the victim crime reporting data used to inform
predictive policing systems is free from bias or leads to unbiased
practices, they do point to a need for further investigation in set-
tings that more closely mirror standard practice. Our work presents
an initial step in this direction.

In this paper we empirically demonstrate how predictive policing
systems trained exclusively on victim crime reporting data (rather
than arrest data) may nevertheless suffer from significant biases due
to variation in reporting rates. Our analysis is based on a simplified
crime simulation patterned after district-level crime statistics for
Bogotá, Colombia released by Bogotá’s chamber of commerce, Cá-
mara de Comercio de Bogotá (CCB). We demonstrate that variation
in crime reporting rates can lead to significant mis-allocation of
police. These findings corroborate the effects of differential victim
crime reporting on predictive policing models hypothesized in [12].
We also discuss the limitations of using reporting rates from ex-
isting crime victimization surveys to attempt to correct for such
biases.

2 BACKGROUND & RELATEDWORK
2.1 Feedback loops and other biases in

predictive policing
Having already described the work of Lum and Isaac [33], we fo-
cus here on [19]. Ensign et al. [19] theoretically characterize why
feedback loops occur by modeling arrest-based predictive policing
systems via a generalized Pólya urn model. Their analysis also con-
siders a scenario in which both reported and detected crimes (i.e.,
arrests) are used to update beliefs about existing crime rates. In
the latter case they show that if the reported crime rates are an
accurate reflection of underlying crime, then feedback loops can
be avoided if either (a) underlying crime rates across regions are
uniform to begin with; or (b) detected crimes aren’t considered at
all. As we will discuss, there is considerable variation in the extent
to which reported crimes reflect true underlying crime levels.

Richardson et al. [45] present three case studies where there is
evidence that “dirty data” may have biased the targets of predictive
policing systems. Their case studies focus primarily on person-
based predictive policing systems. In the case of Maricopa County,
Arizona, however, the authors report one instance in which bi-
ased data may have informed a PredPol system used by the Mesa
Police Department and an RTMDx system used by the Glendale
Police Department. As the authors note, due to the lack of trans-
parency surrounding what data was used and how, it is difficult
to draw definitive conclusions. This, however, does not make the
documented patterns of biased practices against Maricopa County’s
Latino residents any less concerning.

2.2 Victim crime reporting
Many countries and local governments conduct crime victimiza-
tion surveys to better understand factors that drive differences in
crime reporting rates, and to assess discrepancies between official
crime statistics and victimization-based measures of criminal activ-
ity. According to the 2018 report released by the Bureau of Justice
Statistics, which oversees the annual US National Crime Victimiza-
tion Survey (NCVS), 61% of aggravated assaults, 63% of robberies,
38% of simple assaults, and only 25% rapes/sexual assaults are re-
ported to police [39]. In this section we briefly overview different
sources of disparities in victim crime reporting in the US context.
We note that, while our data simulation is based on a 2014 survey
conducted in Bogotá—and crime reporting rates are observed to
be considerably lower there—a number of our conclusions apply
to geography-associated disparities in reporting rates in general.
In particular, our analysis indicates that, to the extent that these
sources of disparity coincide with geography, we can expect signif-
icant under- or over-targeting to result.

The likelihood that a crime is reported to police has been found
to be greater for older victims [4, 8, 28, 51] and when the victim
is a woman [5]. It is also greater if a third party is present [5], if a
weapon is present or the victim is injured [5, 56]. Furthermore, re-
porting rates tend to increase with the degree to which the victim is
of higher socioeconomic status than the offender, which in part ac-
counts for the greater likelihood of white victims reporting crimes
perpetrated by black offenders for crimes such as assaults [55].
However, Xie and Lauritsen [55] also observe that black-on-black
assaults had by far the highest reporting rate in their study (44%,
compared to 25-33% for other racial pairs). This finding of high
reporting rates for intra-racial black-on-black crimes was also re-
ported in [1]. In other words, while some might expect reporting
rates to be lowest in predominantly black communities, this does
not appear to be borne out by the data. Furthermore, the degree
of neighborhood socioeconomic disadvantage is not consistently
associated with the likelihood of crime reporting [4]. An associa-
tion has been observed for simple assaults, but not for robbery or
aggravated assault. An extensive review of research in victim crime
reporting is given in [54].

There are many reasons for why particular incidents may not
be reported to police. These include fear of repercussion, victim
perceptions that their victimization was ‘trivial’, or might be per-
ceived as such by police, or personal relationships with the offender.
Furthermore, there are documented examples of police actively dis-
couraging victims from filing complaints in order to deflate serious
crime statistics [45].

2.3 Predictive policing models
The literature on predictive policing has considered a range of differ-
ent modeling approaches for spatio-temporal crime forecasting and
hot spot selection [21]. To the best of our knowledge, only a small
subset of models have been deployed and evaluated in practice.

PredPol, one of the largest vendors of predictive policing soft-
ware in the US, has been one of few companies to publish modeling
details of their hot spot prediction algorithm [36–38]. The PredPol
algorithm relies on a Self-Exciting Spatio-Temporal Point Process
(SEPP) model that uses the location and time of historical incidents
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to predict the spatio-temporal distribution of future crime within
a city. Hot spot predictions for subsequent time steps can be ob-
tained by evaluating the predicted crime distribution on a grid of
cells overlaying the city. This model, which has its roots in seis-
mology, separates crime occurrences into “background crime” and
“offspring crime” with the rationale that, similar to earthquakes
which often trigger close-by aftershock earthquakes, crime tends
to form clusters in time and space with burglars returning to the
same areas or gang conflicts leading to retaliatory violence [37].

While the SEPP method models both the space and time distri-
bution explicitly, many other common approaches focus of one
component at a time. For instance, one straightforward approach
is to apply time-series analysis to forecast crime counts in small
pre-defined spatial units such as individual segments of streets
or grid cells. In a field experiment with the Pittsburgh Bureau of
Police, Fitzpatrick et al. [20] used a within-cell moving average of
crime counts in order to predict chronic hot spots and a within-cell
multi-layer perceptron on lagged crime count features to predict
temporary crime flare-ups. The authors report that the relatively
simple moving average model alone was able to capture more crime
on average than other models including SEPP models. The Shreve-
port Police Department in Louisiana conducted experiments with
a logistic regression model in 2012 [30]. In addition to different
lagged crime counts, predictors also included the number of ju-
venile arrests in the past six month and the presence of residents
on probation and parole in each of the 400-by-400-foot grid cells.
Other methods focus on the spatial distribution of crime and ag-
gregate the temporal component. Spatial kernel density estimates
(KDE’s) and risk terrain modelling, which involves risk factors be-
yond crime rates, are used to help identify chronic hot spots but
generally require visual inspection if spatial discretization is to be
avoided [21, 23]. A number of these models including SEPP’s [17],
KDE’s, moving-average type models, and other approaches [3, 18]
have previously been applied to historical crime data from Bogotá.
Barreras et al. [3] found, for instance, that KDE models performed
the best in their analysis.

In this study, we focus on SEPP models for crime hot spot predic-
tion as they appear to be one of the most widely used and analysed
type of model, a trend driven in part by PredPol’s popularity and
the descriptions of their models publicly available in peer-reviewed
literature. For comparison purposes, we also consider a moving av-
erage model as analysed in [20]. Both models are based only on the
location an time of previous crimes, which makes them particularly
accessible to police departments.

3 METHODOLOGY
3.1 Self-Exiting Spatio-Temporal Point

Processes
Self-Exciting Spatio-Temporal Point Processes (SEPP) are a com-
monly used class of models for applications in which the rate of
events depends on nearby past events, e.g. modeling of earth quakes
or the spread of infectious diseases. In the purely temporal case,
this class of models is also known as Hawkes processes. We give
a short introduction to SEPP, the specifications used in predictive
policing and the model used in this study. A more detailed review
of SEPP can be found in [44].

SEPPs separate events into two types: background events and
offspring events. Background events are generally assumed to occur
independently across space and time according to a Poisson point
process. Each event can then cause offspring events in its vicinity
according to a triggering function decaying in space and time. The
rate of events at locations (𝑥,𝑦) ∈ 𝑋 × 𝑌 ⊆ R2 and times 𝑡 ∈ [0,𝑇 ]
is characterized by the conditional intensity, defined as

𝜆(𝑥,𝑦, 𝑡 |H𝑡 ) = 𝜇 (𝑥,𝑦) +
∑

{𝑘 :𝑡𝑘<𝑡 }
𝑔(𝑡 − 𝑡𝑘 , 𝑥 − 𝑥𝑘 , 𝑦 − 𝑦𝑘 ), (1)

where H𝑡 = {(𝑥𝑖 , 𝑦𝑖 , 𝑡𝑖 )}𝑛𝑖=1 is the history of events up to time 𝑡
which we will omit for simplification of notation. The background
intensity 𝜇 (𝑥,𝑦) is often assumed to be time-independent while the
triggering function 𝑔(𝑡 − 𝑡𝑘 , 𝑥 −𝑥𝑘 , 𝑦 −𝑦𝑘 ) is generally chosen to be
separable in time and space for computational simplicity. For each
event (𝑥𝑘 , 𝑦𝑘 , 𝑡𝑘 ), the number of offspring events follows a Poisson
distribution with mean

𝑚 =

∫
𝑋×𝑌

∫
𝑇

𝑔(𝑡, 𝑥,𝑦)d𝑡d(𝑥,𝑦) .

If properly normalized,𝑔(𝑡−𝑡𝑘 , 𝑥−𝑥𝑘 , 𝑦−𝑦𝑘 ) induces the probability
distribution of the locations and times of these events. After model
fitting, the SEPP can be used to predict the locations and times of
future events. Assume we want to predict the number of events
𝑁𝐴,𝑡 within an area𝐴 ⊆ 𝑋 ×𝑌 at a given time 𝑡 = 𝑡 ′. This prediction
can be obtained by computing the integral�𝑁𝐴,𝑡 ′ =

∫
𝐴

𝜆(𝑥,𝑦, 𝑡 |H𝑡 ′, 𝑡 = 𝑡 ′)d(𝑥,𝑦). (2)

SEPP models were first applied to crime data for hot spot pre-
diction by Mohler et al. [37]. Initially, the authors suggested non-
parametric estimation of 𝜇 and 𝑔 based on only background or
offspring crimes respectively which requires a computationally ex-
pensive iterative stochastic declustering procedure. In subsequent
work, Mohler [36] introduced a parametric approach that uses all
data to estimate the background intensity with kernel density es-
timation and assumes a triggering function that is exponential in
time and Gaussian in space. The benefit of this parametric approach
is that model parameters can be be estimated with a less expensive
Expectation-Maximization procedure. In field experiments with the
Los Angeles Police Department and the Kent Police Department,
United Kingdom, [38] forgo a complicated spatial model by fitting
a cell-wise constant background intensity and a triggering function
only exponential in time.

In this work, we draw on a fully parametric SEPP model that is
inspired by the simulations conducted in [37]. We assume a scaled
Gaussian background intensity, defined as

𝜇 (𝑥,𝑦) = 𝜇

2𝜋 (15)2 exp
(
− 𝑥2

2(152)

)
exp

(
− 𝑦2

2(152)

)
, (3)

where the spatial deviation is chosen purposefully large to ensure
support on the whole city map. Our triggering function is similar
to the proposed parametric functions and takes the form

𝑔(𝑡, 𝑥,𝑦) = 𝜃𝜔 exp(−𝜔𝑡) exp
(
− 𝑥2

2𝜎2
𝑥

)
exp

(
− 𝑦2

2𝜎2
𝑦

)
. (4)

Choosing a fully parametric model allows us to analyze a best-case
scenario of the bias introduced by differential crime reporting rates
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as similar models can be used for data simulation and model fitting
keeping error introduced by model misspecification at a minimum.
In addition, the model choice enables efficient computation of the
prediction integrals in Equation 2. For crime hot spot prediction,
city maps are generally split into small areas by imposing a grid
with fixed cell lengths. To predict the number of crimes within a
cell at time 𝑡 , integration over the estimated intensity function is
necessary which can be computationally expensive depending on
the exact model choice. To the best of our knowledge, the model
we use is similar to the model employed by PredPol’s commercial
hot spot prediction software.

3.2 Expectation-Maximization Procedure
The parameters of the SEPP model in Equation 1-4 are estimated
using maximum likelihood. As an analytical solution is intractable,
[50] introduced an Expectation-Maximization (EM) algorithm that
maximizes the log-likelihood. Assuming we know the branching
structure of the data set {(𝑥𝑖 , 𝑦𝑖 , 𝑡𝑖 }𝑛𝑖=1, i.e. which events were trig-
gered by which previous events and which events come from the
background process, we introduce a latent variable 𝑢𝑖 which equals
𝑗 if crime 𝑖 was triggered by crime 𝑗 and 0 if it was sampled from the
background process. Given these latent quantities, the complete-
data log-likelihood of the parameter vector Θ = (𝜇, 𝜃, 𝜔, 𝜎𝑥 , 𝜎𝑦) can
be written as

𝑙 (Θ) =
𝑛∑
𝑖=1
I(𝑢𝑖 = 0) log(𝜇 (𝑥𝑖 , 𝑦𝑖 ))

+
𝑛∑
𝑖=1

𝑛∑
𝑗=1
I(𝑢𝑖 = 𝑗) log(𝑔(𝑡𝑖 − 𝑡 𝑗 , 𝑥𝑖 − 𝑥 𝑗 , 𝑦𝑖 − 𝑦 𝑗 ))

−
∫
𝑋×𝑌

∫
𝑇

𝜆(𝑥,𝑦, 𝑡)d𝑡d(𝑥,𝑦),

where I(·) is the indicator function. Given a data set of crime events,
the EM algorithm provides an iterative procedure of estimating the
triggering probabilities 𝑢𝑖 and the parameters Θ. In the E step, we
estimate the triggering probabilities based on current parameter
values as

P(𝑢𝑖 = 𝑗) =
{
𝑔 (𝑡𝑖−𝑡 𝑗 ,𝑥𝑖−𝑥 𝑗 ,𝑦𝑖−𝑦 𝑗 )

𝜆 (𝑥𝑖 ,𝑦𝑖 ,𝑡𝑖 ) if 𝑡 𝑗 < 𝑡𝑖 ,

0 else.

and P(𝑢𝑖 = 0) = 𝜇 (𝑥𝑖 , 𝑦𝑖 )/𝜆(𝑥𝑖 , 𝑦𝑖 , 𝑡𝑖 ). These latent values can then
be plugged into the expected complete-data log-likelihood which
gives

E[𝑙 (Θ)] =
𝑛∑
𝑖=1

P(𝑢𝑖 = 0) log(𝜇 (𝑥𝑖 , 𝑦𝑖 ))

+
𝑛∑
𝑖=1

𝑛∑
𝑗=1

P(𝑢𝑖 = 𝑗) log(𝑔(𝑡𝑖 − 𝑡 𝑗 , 𝑥𝑖 − 𝑥 𝑗 , 𝑦𝑖 − 𝑦 𝑗 ))

−
∫
𝑋×𝑌

∫
𝑇

𝜆(𝑥,𝑦, 𝑡)d𝑡d(𝑥,𝑦) .

In the M step, we maximize the expected log-likelihood with respect
to Θ and return to the E step with the new parameter estimates.
This procedure is repeated until the parameter values converge.

3.3 Bogotá Victimization and Reporting Survey
Victimization rates—i.e. the fraction of the population who has been
victim of a crime within a given time window—and victim crime re-
porting rates—i.e the fraction of crime victims who has reported the
offense to the police—can generally not be assessed based on only
police data but require large-scale surveys. Often, these surveys are
not conduced or published with a high-enough spatial resolution
to give a sense of differences at a local level. For instance, the US
Bureau of Justice Statistics conducts a bi-annual National Crime
Victimization Survey with around 95,000 households and publishes
rates of victimization and crime reporting on a national level and
aggregated by urban, suburban and rural areas [39].

In order to study the effect of differential victim crime report-
ing on predictive policing systems, which are generally limited
to a single city, a higher spatial resolution of victimization and
crime reporting rates is required. Fine-grained data sets like this
are rare and, based on availability, we draw on district-level data
from Bogotá, Colombia collected by Bogotá’s chamber of commerce,
Cámara de Comercio de Bogotá (CCB).

The bi-annual CCB crime perception and victimization survey
includes approximately 10,000 randomly selected participants from
all socio-economic statuses and all 19 urban districts of Bogotá.
Among other questions, participants are asked to indicate whether
they have been the victims of a crime in the present calendar year
and, if yes, whether they have reported the crime to the police.
Results of the surveys are available on the CCB website and are
used to inform the definition and adjustment of the city’s public
policies [13]. Not all of the published reports stratify results by
districts. For our experiments, we use victimization and victim
crime reporting rates stratified by district based on the survey that
covers the first half of 2014 [14]. Districts, population sizes and
rates are depicted in Figure 1. Both the crime victimization rates
and the victim crime reporting rates vary significantly between
different districts with victimization rates between 5% and 18%
and victim crime reporting rate from 13% to 33%. Although the
range of both rates can be expected to vary significantly between
different cities and countries, this data allows us to analyze the
impact of differential crime reporting on predictive policing in a
realistic scenario.

3.4 Synthetic Data Generation
We simulate location and time of reported and unreported crime
incidents in Bogotá districts according to the victimization and
victim crime reporting rates displayed in Figure 1. In order to min-
imize possible errors due to model misspecification and instead
concentrate on the effect of differential reporting rates, we sample
data directly from a high-intensity SEPP and subsample according
to each district’s victimization rate. The background intensity of
the SEPP is a sum over bivariate Gaussian distributions centered
at 14 locations spread out evenly on the Bogotá map. Each back-
ground crime triggers offspring according to a triggering function
that is Gaussian in space and exponential in time coinciding with
the model we are fitting (see Equation 1-4). Since the data will be
used to predict hot spots on a fixed grid, we impose a grid of 1 km
× 1 km cells on the Bogotá map as depicted in Figure 1. District
membership of each cell is decided based on its center and each
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Id District Pop. Vict.
rate

Rep.
rate

1 Antonio
Nariño

109,176 15 % 33%

2 Barrios
Unidos

243,465 12 % 22%

3 Bosa 673,077 13 % 26%
4 Candelaria 24,088 12 % 22%
5 Chapinero 139,701 9 % 28%
6 Ciudad

Bolívar
707,569 8 % 17%

7 Engativá 887,080 11 % 20%
8 Fontibón 394,648 10 % 19%
9 Kennedy 1,088,443 13 % 28%
10 Los

Mártires
99,119 17 % 25%

11 Puente
Aranda

258,287 14 % 32%

12 Rafael
Uribe
Uribe

374,246 12 % 15%

13 San
Cristóbal

404,697 13 % 21%

14 Santa Fe 110,048 17 % 17%
15 Suba 1,218,513 5 % 19%
16 Teusaquillo 153,025 14 % 19%
17 Tunjuelito 199,430 17 % 23%
18 Usaquén 501,999 18 % 13%
19 Usme 457,302 9 % 33%

Figure 1: Bogotá district map with division into 1km×1km
grid cells for hot spot prediction and survey-based victim-
ization and victim crime reporting rates. Districts differ no-
tably in size, population numbers, and rates.

point is attributed to the district of the cell it falls into. We dicretize
the time component into daily units and simulate crime data for
2,190 timesteps (6 years) as follows:

(1) Sample a set of candidate points C = {(𝑥𝑖 , 𝑦𝑖 , 𝑡𝑖 )}𝑁𝑖=1 from 𝜆

and discard all points that fall outside of the city bounds or
time horizon.

(2) For each district 𝑑 and data within its bounds C𝑑 ⊆ C, we
subsample 𝑛𝑑 ∼ Bin( |C𝑑 |, 𝑝𝑑 ) of the points to form the true
crime data set D, where

𝑝𝑑 =
population(𝑑) · victimization rate(𝑑) · 12

|C𝑑 |
.

(3) To get a data set of only reported crime, we subsample 𝑛𝑑 ∼
Bin( |D𝑑 |, 𝑞𝑑 ) crimes for each district 𝑑 where D𝑑 ⊆ D is
the set of crimes falling into the given district and

𝑞𝑑 = victim crime reporting rate(𝑑) .

We implicitly assume that each person is victim of at most one
crime which leads to the time scaling factor 2190/(365/2) = 12
in step 2 as the CCB survey provides rates of victimization for a
half-year period. In addition, district population counts are scaled
by 1/40 to speed up the run time of the whole simulation. The
described sampling procedure for the true data D ensures that
crime is sampled according to population size and victimization
rates but remains distributed according to a thinned SEPP that can
be accessed for evaluation of the ground truth conditional intensity.
Since D ∼ 𝑝𝑑𝜆, the true expected number of crimes in a subarea

𝐴𝑑 of district 𝑑 in time 𝑡 = 𝑡 ′ can be computed as

E[𝑁𝐴𝑑 ,𝑡
′] =

∫
𝐴𝑑

𝑝𝑑𝜆(𝑥,𝑦, 𝑡 |H𝑡 ′, 𝑡 = 𝑡 ′)d(𝑥,𝑦),

whereH𝑡 ′ = {(𝑥𝑖 , 𝑦𝑖 , 𝑡𝑖 ) ∈ C : 𝑡𝑖 < 𝑡 ′}.
Figure 6 depicts a summary of the sampled number of crimes per

district, the number of crimes expected according to above integral
and the number of crimes as implied by the CCB survey showing
that the synthetic data set has the desired rates of victimization for
each of the districts.

4 RESULTS
4.1 Hot spot prediction procedure
We fit SEPPmodels (see Equation 1-4) on the full and reported crime
data by discarding the data from the first 500 simulated time steps
and training on the subsequent 1,500 days (≈ 4 years) of sampled
incidents. Ignoring the first 500 time steps omits the period in which
the data generating SEPP is converging to its equilibrium rate and
provides a data set that more closely resembles the crime data over
fixed time windows we would expect to see in practice. In addition,
the time range of approximately 4 years is reasonably close to real
crime data sets and falls well within the range of 2-5 years that is
suggested by PredPol specifically [41].

The fitted models are used to predict crime intensities on a day-
to-day basis for 189 evaluation days where, after each time step,
the data for the time step is observed and added to the estimated
intensity function for future predictions. On each prediction day,
we compute the models’ intensity integrals in each of the 1 km ×
1 km Bogotá grid cells. These integrals correspond to the absolute
predicted crimes per cell and are subsequently used for hot spot
selection. Since police are generally only able to patrol small frac-
tions of a city effectively, we select the top 50 cells with highest
predicted crime as hot spots which corresponds to approximately
5.7 % of the city’s area. Results are aggregated over 50 simulation
runs where each simulation samples a new crime data set.

4.2 Equity between districts
4.2.1 Relative number of predicted hot spots. We now discuss the
equity of hot spot selection at a district-level. We start by examining
how the number of predicted hot spots compares to the number of
true hot spots per prediction day in each district. In the case where
police are deployed in accordance with the model’s predictions, this
directly corresponds to the degree of police presence per district
relative to a best-case hot spot policing program in which the true
crime distribution is known.

Figures 2 and 3 depict the relative hot spot counts for a subset
of districts over all evaluation time steps and simulation runs. For
Figure 2, we set the relative count to 1 for cases in which the district
has zero true hot spots and the model correctly predicts zero hot
spots and exclude cases with zero true but non-zero predicted hot
spots. We see that the SEPP model that was trained on all crime
data, i.e. reported and unreported, performs well at selecting the
correct number of hot spots uniformly over all districts (S1). This
observation is unsurprising given that the fitted model closely
resembles the data generating model.
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Figure 2: Relative number of predicted crime hot spots for a selection of Bogotá districts. Each data point represents a district-
specific fraction at a given evaluation time step (189 days) in a given simulation run (50 runs). A total of 50 hot spots are
selected at each time step. See Figure 7 for relative predicted hot spot counts for all districts.

In contrast, the SEPP model that was trained on only reported
crime data (S2) is found to have differential performance across dis-
tricts. Although in some districts, e.g. in Tunjuelito, the relative hot
spot counts of the two models appear to be similar, the model with
under-reporting on average overestimates the number of hot spots
in districts such as Antonio Nariño, Puente Aranda or Kennedy,
while underestimating the number of hot spots in districts such
as Usaquén, Rafael Uribe Uribe or Engativá. The direction of the
introduced error aligns with the victim crime reporting rates of
the respective districts as compared to a Bogotá-wide average with
fewer of the true hot spots detected in low reporting areas and
instead overly many hot spots predicted in high reporting areas.
In Usaquén, which with 13% has the lowest victim crime report-
ing rate among all districts, only 20.4 % of the number of true hot
spots are predicted on average. Meanwhile in Kennedy, which has
a comparatively high reporting rate of 28 %, the model on average
predicts 126.1 % the number of true hot spots.

Thus far, we have disregarded cases in which none of the true hot
spots fall into a given district but the prediction model selects one or
more cells. Figure 3 gives a summary of the fraction of cases with no
true hot spots, further confirming the observed displacement effect
of hot spot predictions. In Usaquén, the number of times crime hot
spots are predicted when none of the true top 50 crime hot spots lie
in the district is over twice as high in the full data SEPP compared
to the reported crime SEPP. The same fraction increases more than
threefold in the high-reporting district Antonio Nariño, and almost
twofold in Puente Aranda. Notably, Figure 3 also shows that the
displacement effect both impacts districts that almost always have

areas with highly concentrated crime and districts that do not. This
phenomenon is a function of victimization rates, population sizes
and the size of districts.

Finally, average absolute numbers of over- or underpredicted
hot spots are displayed in Figure 9. Although comparison of rel-
ative counts ensures that districts of different sizes are evaluated
similarly, in some cases we might be interested in the number of
grid cells affected by the introduced bias as they roughly relate to
the number of impacted individuals. For example, we see that the
displacement of predicted hot spots based on differential victim
crime reporting rates leads to on average 3.3 too many hot spots
predicted in Kennedy while only 0.64 too many cells in Antonio
Nariño are selected on average.

Overall, differential reporting rates across districts seem to lead
to differentially well-measured aggregate crime levels which dis-
torts the distribution of hot spots. If the police follows the model’s
recommendations, the consequence would be an unfair allocation
of police patrols where areas with low victim crime reporting rates
are met with artificially decreased police presence while areas with
higher reporting rates are chronically over-policed.

4.2.2 Crime threshold for hot spot selection. Calculating relative
counts of predicted hot spots gives insights into how much under-
or over-policing we can expect per district. A natural way of com-
paring between districts is to look at the true crime rates required
for a cell to be selected as a hot spot. If this threshold is much lower
for some districts than for others, the consequence could be more
average police presence in these districts despite similar or even
higher crime levels in other areas.
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Figure 3: Fraction of prediction time steps with no true hot
spots in districts. We separate instances into cases with pre-
dicted and no predicted hot spots. See Figure 8 for a version
with all districts.

Figure 4 shows that the predicted crime rates implied by the
reporting data SEPP model present a differentially well-adjusted
approximation of true crime rates. Comparing the normalized maps
in the Figure, the reported crime SEPP appears to overestimate
the relative concentration of crimes in the high-reporting regions
Kennedy and Antonio Nariño, and underestimate the relative con-
centration of crimes in low-reporting districts such as Rafael Uribe
Uribe and Usaquén. Moreover, crime rate prediction seems to per-
form poorly in areas with little true crime. While the ground truth
shows clear differences between crime intensities in areas such as
Ciudad Bolívar and Usme, the model predictions in these districts
appear to be almost indistinguishable.

In order to measure equity of model predictions between dis-
tricts, we consider the minimum true crime rate that leads to a
predicted hot spot at each prediction step and summarize the re-
sults in Figure 5. Since exact crime counts vary over time and this
metric omits steps with no predicted hot spots falling into the re-
spective district, the average thresholds have some variability even
for full data models. However for districts that are regularly pre-
dicted to have hot spots, the full data SEPP model (S1) exhibits
very similar hot spot prediction threshold of around 0.5 expected
crimes per cell and time step where the low threshold is explained
by the population scaling we conducted while simulating Bogotá
crime data. In contrast, the model trained on only reported crime
data results in varying thresholds even across districts which are
regularly predicted to have hot spots. The district-wide average
threshold of 0.45 true expected crimes per cell is increased in ar-
eas with low crime reporting, e.g. to a rate of 0.73 true crimes on
average in Rafael Uribe Uribe and 0.62 in Usaquén. At the higher

Id District
1 Antonio

Nariño
2 Barrios

Unidos
3 Bosa
4 Candelaria
5 Chapinero
6 Ciudad

Bolívar
7 Engativá
8 Fontibón
9 Kennedy
10 Los

Mártires
11 Puente

Aranda
12 Rafael

Uribe
Uribe

13 San
Cristóbal

14 Santa Fe
15 Suba
16 Teusaquillo
17 Tunjuelito
18 Usaquén
19 Usme

Figure 4: Normalized average crime in each cell. The left side
depicts the average over true intensity integrals, while the
right side uses predictions from the SEPP model trained on
only reported crime data. In both cases, we normalize by di-
viding by the respectivemaximumaverage prediction value.

end of victim crime reporting rates, grid cells in Puente Aranda on
average only require a rate of 0.32 true crimes and cells in Kennedy
only 0.27 to be selected as a crime hot spots. More concretely, this
means that on average the minimum true crime rate that leads to a
predicted hot spot in Rafael Uribe Uribe is 2.7 times the minimum
crime rate required in Kennedy. In order to rule out the possibility
that Kennedy’s threshold is artificially high because all of the cells
in the district are regularly selected as hot spot, we examine the
absolute predicted hot spot counts and find that at no time step
more than 72.97 % of Kennedy is selected as hot spot area with a
mean of 48.18 %.

These findings imply that crime hot spot prediction in real-world
settings with differently sized regions and differential victimization
and crime reporting rates can have noticeably biased outcomes
that lead to over-policing of some areas of a city while others have
higher levels of crime.

4.3 Scaling by victim crime reporting rates
It is not unusual for police and predictive policing algorithms to
leverage data sets beyond registered crime incidents [22, 32, 46]. In
the case presented here, one could imagine pairing the reported
crime data with the survey data to attempt to correct the bias intro-
duced by differential crime under-reporting. Intuitively, this entails
rescaling the predicted crime rates according to the reporting rates.
Of course, in most cases exact crime reporting rates are unknown
to the police. However, as we discuss in this section, even in cases
where the reporting rates are known, this rescaling does not neces-
sarily recover the true crime distribution at the finest level.
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Figure 5: True crime thresholds for hot spot selection in a set of Bogotá districts. Each point corresponds to an evaluation time
step (189 days) and a simulation run (50 runs). See Figure 10 for all districts.

We explore the rescaling approach as an additional model in our
hot spot prediction simulation by taking the integrated intensities
in grid cells supplied by the reporting data SEPP and dividing them
by the victim crime reporting rate of the respective district. After
rescaling, we select the cells with the top 50 highest predictions
as hot spots analogous to the other models. The relative predicted
hot spot counts of the rescaled model (S3) are displayed along the
other models in Figure 2. Across the displayed districts, the mean
relative number of predicted hot spots is just as close or closer to
the number predicted by the full data model (S1) than the reporting
data based predictions (S2). This indicates that the rescaling strategy
successfully reduces outcome disparities. However, this conclusion
is called into question when examining the implied minimum true
crime rate for hot spot selection shown in Figure 5. For example
in Usaquén, the rescaled model implies a visibly lower average
true crime threshold for hot spot selection than the full data model,
and in Engativá the difference between the full data and rescaled
models appears to be larger than the difference between the full
and reporting data models.

The conflict between the equity measures is observed because
the relative predicted hot spot counts are an aggregate metric over
all cells and not sensitive to which cells are selected, in contrast to
the minimum true crime threshold for hot spot selection. Rescaling
of the reporting data SEPP predictions increases predictions in all
cells of a district by the same factor without accounting for how
much crime was unobserved in each of the cells. As a consequence,
the rescaled model selects an approximately correct number of hot
spots inmany of the districts while the exact cells might not coincide
with the true hot spots. In order to recover the cell-wise true crime

distribution, a cell-by-cell rate of crime reporting would be required,
which presupposes separate representative surveys in hundreds of
micro-areas. While incorporating victimization survey information
does help to reduce disparities to some extent, it evidently does not
suffice in order to fully debias the prediction system.

4.4 Comparison to a moving average model
In this section we study the behavior of a simple moving average
(MAVG) prediction model to assess whether our findings hold more
generally outside of the SEPP prediction model setting. MAVG
prediction models are fitted analogously to the SEPP models on
the full and reported crime data sets. Despite being perhaps the
simplest possible prediction model, MAVG’s have been found to
perform particularly well for detecting long-term hot spots [20] in
real world data.

For our application, we aggregate crime in the same 1 km × 1 km
grid cells previously used and fit a within-cell MAVG model to
predict the daily crime counts on the same training data sets as
before. To obviate the need for tie-breaking that would arise if using
simple averaging, we instead employ an exponentially-weighted
MAVGmodel. The same model parameter is estimated for the entire
Bogotá grid by searching over a linear scale of bandwidths for the
exponential smoothing kernel and selecting the parameter that in-
duces minimal average error with lagged prediction on the training
data set. The models are updated on a daily basis by incorporating
the crime counts of the previous day.

The performance of the full data MAVG model (M1), the report-
ing data MAVG model (M2), and the rescaled MAVG model (M3)
are depicted in Figure 2, 3 and 5 alongside the corresponding SEPP
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models. We observe that the MAVG models generally perform sim-
ilarly to their respective SEPP counterparts. The full MAVG model
(M1), for instance, performs on par with the full data SEPP model.
Likewise, the reporting data MAVG (M2) induces similar outcome
disparities in relative hot spot counts and minimum true intensi-
ties as the SEPP trained on victim crime reporting data, and the
rescaled MAVG model (M3) struggles to correct the finer resolution
bias similarly to the rescaled SEPP model.

At first glance these similarities might be surprising, especially
because the true data was simulated from a SEPP. However both the
SEPP and the MAVG model follow similar modeling ideas. While
the MAVG model forgoes the spatial modeling component by dis-
cretizing into grid cells prior to prediction, whereas the SEPP has a
continuous underlying intensity that is later integrated over grid
cells, both methods model the time between events with an expo-
nential function. In addition, both models make predictions based
on a weighted average of previous nearby events and the weights
can be fairly similar if we assume that the spatial deviation of the
triggering function is small in comparison to the size of the grid cell
such that most offspring crimes fall into the same cell as their par-
ent. This assumption is often justified as the criminology literature
tends to describe crime hot spots as micro areas of only a few blocks
or street segments with high concentration of crime [21]. Indeed,
in their randomized controlled field trials, the researchers affiliated
to PredPol omit the spatial component of the SEPP altogether and
discretize crimes into cells before modeling [38].

5 DISCUSSION
Our analysis demonstrates how predictive policing systems exclu-
sively trained on victim crime reporting data can lead to spatially
biased outcomes due to geographic heterogeneity in crime reporting
rates. This in turn can result in over-policing of certain communities
while others remain under-served by police.

Our findings are based on synthetic crime data simulated accord-
ing to district-level victimization and victim crime reporting rates
published by Bogotá’s chamber of commerce, Cámara de Comercio
de Bogotá. We empirically evaluate the equity of predictions across
districts of a hot spot prediction algorithm similar to the models
used by PredPol. Our findings suggest that districts with low crime
reporting rates have fewer of their crime hot spots detected by the
algorithm. Conversely, districts with high crime reporting rates
are found to have a higher concentration of predicted hot spots
than the true crime levels would justify. Moreover, the effective
true level of crime required for the model to predict a hot spot is
found to vary by more than a factor of two across the districts.

We explore if known victim crime reporting rates can be used to
debias hot spot predictions by scaling crime expectations appropri-
ately. The results suggest that this is unsuccessful when reporting
rates are known at a district level but hot spots are predicted at a
smaller individual cell level since noise introduced by individually
thinned crimes is propagated to the rescaled predictions which
makes singling out of specific cells in comparison to other cells in
the same district difficult.

Prior work has focused on feedback loops and the potential
harms of arrest data-based predictive policing systems [19, 33]. Yet,
in practice, predictive policing systems are based on data from

victim crime reports [11]. Our work presents an initial step to-
ward understanding the effect of bias in victim crime reporting
data on predictive policing systems. Our analysis demonstrates the
importance of considering reporting rate variation when assess-
ing predictive policing systems for potential harms and disparate
impacts.

5.1 Limitations
5.1.1 Crime location vs. survey location. Victimization surveys gen-
erally provide us with information on crime reporting based on
where people live, not based onwhere crimes occur. On a small scale
like a single city, this spatial disparity makes it hard to take survey-
based information into account for police allocation. While this
limitation of how survey data is collected does not invalidate our
findings—in our simulations we treat the reporting rates as reflect-
ing rates of reporting for crimes occurring in the given district—it
does present a challenge for using such survey data to de-bias pre-
dictions in practice. In order for survey data to be useful for this
purpose, questions need to ask not only where respondents reside,
but also where the victimization(s) occurred.

5.1.2 Static reporting rates and potential deterrence effects. Thus
far, we do not take the effects of the actual interventions in the form
of patrolled hot spots into account. We hypothesize that both vic-
timization rates and victim crime reporting rates can be susceptible
to police presence and a model that jointly describes the interplay of
crime, reporting rates and police deployment is required for a more
complete picture. One component currently omitted is a deterrence
effect of policing. Failing to consider such effects could result in the
reallocation of police patrols away from neighbourhoods where
they are having the intended deterrence effect, precisely because
reported crime rates would be lower when police are successful in
deterring crime.

5.2 Implications and Generalizability
5.2.1 Relationship to socioeconomic advantage. Research on victim
crime reporting shows that the decision to report a crime is influ-
enced by the severity of crime [e.g. 25, 26], victim characteristics
[e.g. 29, 47], and contextual factors such as neighborhood charac-
teristics [e.g. 4, 48, 57]. While we lack information on victim and
crime characteristics in the survey data, we are able to speak to a
number of socio-technical implications of our results.

Prior research finds links between severe socioeconomic neigh-
borhood disadvantage and lower reporting rates for simple assault
incidents [4]. Goudriaan et al. [25] obtain similar results analysing
crime incidents from the Netherlands paired with the Dutch Police
Population Monitor survey. Some studies describe a more indirect
effect of socioeconomic status on the likelihood of reporting. For ex-
ample, [7] find that victims who are involved in illegal behavior are
less likely to report violent acts against them to the police, and this
effect is particularly pronounced in disadvantaged neighborhoods.
The findings of [47] suggest that prior police-initiated contact with
law enforcement has a negative impact on the reporting of future
crime that is amplified for African Americans and poorer individu-
als. The authors of [10] study the help-seeking behavior of women
who experience intimate partner violence. The study finds that, for
the lowest income women, the severity of violence does not predict
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whether law enforcement is contacted. With increasing income the
severity becomes more indicative of victim crime reporting.

In the Bogotá survey data, there appears to be no clear asso-
ciation between reporting rates and socioeconomic advantage at
the district level. Ciudad Bolívar, a district with large urban slums
that is home to some of the most socioeconomically disadvantaged
residents of Bogotá, has a reporting rate of 17%. In line with previ-
ous research, this lies well below the average reporting rate across
districts of 22.7%. However, Usaquén, the district with the lowest re-
porting rate of 13%, is also one of the wealthiest districts in Bogotá.
We hypothesize that this is in part explained by the spatial clus-
tering of specific crime types. In particular, Usaquén experiences
a greater proportion of residential burglary and theft than other
districts [15, 22]. Given that victim crime reporting rates vary based
on perceived severity [54], this might contribute to a decreased vic-
tim crime reporting rate. Additionally, this may also be influenced
by intra-district heterogeneity of wealth, as socioeconomically dis-
advantaged neighborhoods such as El Codito are also located in
this district.

There is no simple relationship between socioeconomic level of
districts and the geographical disparities induced by the hot spot
prediction algorithm. This is in part driven by the observed com-
plexity in the relationship between socioeconomic status and crime
reporting at the district level. For example, areas that we project
to be over-policed under hot spot policing include the middle class
district Antonio Nariño, the lower middle or working class district
Puente Aranda and the working and lower class district Kennedy.
Areas observed to be under-predicted likewise include districts in-
habited by upper, middle, working and lower class residents. Thus
our findings do not indicate that variation in crime reporting rates
systematically disadvantages Bogotá’s districts in a manner that
falls along socioeconomic lines.

5.2.2 Relationship to demographics. Demographic factors such as
age [4, 8, 28, 51], gender [5] and race [1, 55] can play a role in
victim crime reporting. Desmond et al. [16] examine the change in
Milwaukee’s crime reporting rates after public broadcast of police
violence against an unarmed black man. They find that, particularly
in black neighbourhoods, residents were far less likely to report
crime to police following the incident. Ultimately, race and ethnic-
ity are often correlated with socioeconomic status and location,
which makes it difficult to identify the direct relationships between
demographic variables and victim crime reporting rates [46].

Due to data limitations, we are unable to provide an indepth dis-
cussion of the relationship between race, ethnicity and predictive
disparities in the Bogotá context, as we do not have access to de-
mographic information on the victimization survey participants. A
discussion of the Bogotá-specific interplay of race, ethnicity, crime
and policing, and how it might generalize to other contexts, thus
remains beyond the scope of this paper.

5.2.3 Generalizability to other jurisdictions. Crime reporting deci-
sions also operate in a macrolevel context encompassing specific
cities, local governments or whole nations [54]. Gutierrez and Kirk
[27] find that, within the US, metropolitan areas with greater pro-
portions of foreign-born or non-US citizens have decreased crime
reporting rates, and the results of [35] suggest that cities with more
female police officers have higher rates of victim crime reporting for

violent crimes against women. Goudriaan et al. [24] analyze data
from 16 Western industrialized countries and find that differences
in crime reporting rates are not entirely explained by crime types,
individual and local contexts, but vary with nation-level factors
such as the perceived competence of the police at large.

Since our study is exclusively based on survey data from Bogotá,
specific findings do not necessarily generalize to other geographies.
In particular, while our analysis did not find evidence of a simple
relationship between socioeconomic factors at a district level and
predictive disparities, results would likely be different in regions—
or at resolutions—where socioeconomic factors are more directly
associated with reporting rates.

Although the specific spatial distribution and societal implica-
tions of the predictive disparities are likely to vary between different
jurisdictions, our results suggest that some form of outcome dispar-
ity can be expected if victim crime reporting rates have sufficient
spatial variation. Such spatial variation is relatively commonplace
and can be expected if, for example, the city has some amount of
socioeconomic segregation since crime reporting rates vary with
neighborhood disadvantage [4, 7, 54].

5.2.4 Combining data sources and debiasing. Predictive policing
algorithms rely on crime data collected by law enforcement that
has repeatedly been found to be flawed, biased or in other ways
‘dirty’ [45]. Much of the attention has focused on biases in police-
initiated and particularly arrest data, for instance racial bias in drug
related arrests or traffic stops in the US [6, 40]. PredPol acknowl-
edges some of these biases and publicly states that no drug-related
offenses, traffic stops or arrest data are used in their prediction
system [42]. Yet there is a lack of transparency as to how the data
types that are ‘too biased’ to be included were identified, to what
extend other data sources are biased, and which types of biases
were considered. To the best of our knowledge, there has been no
consideration of reporting biases although their link to socioeco-
nomic, demographic and cultural factors as described in earlier
sections is known. Motivated by this problem, we show that, even
when predictive policing algorithms only operate on victim crime
reporting data, and thereby attenuate the effects of biased police
arrest practices, differential victim crime reporting rates can lead
to geographically biased prediction outcomes.

In addition to police data, some predictive policing systems in-
corporate contextual data from other sources [22, 46]. For example,
HunchLab combines public reports of crime and requests of police
assistance with data including weather patterns, geographical fea-
tures, schedules of major events and even moon phases [46]. In the
setting of the hot spot prediction analyzed in this study, one could
imagine the proposal to account for the bias introduced by differen-
tial reporting rates by scaling model outputs by the survey-based
geographically stratified reporting rates. However, our preliminary
experimentation suggests that, although in some cases bias can be
decreased, a complete mitigation is not possible if the surveyed
victim crime reporting rates do not have sufficient spatial resolu-
tion. For successful debiasing, we would require close-to-optimal
estimates of victim crime reporting rates at the grid cell level, which
is impossible to obtain in practice. Ultimately, it is unclear if debias-
ing victim crime reporting data is any easier than the unsuccessful
previous efforts of mitigating bias introduced by arrest data.
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Figure 6: District-wise sanity check of synthetic crime data over all 2,190 time steps. The average daily counts of simulated
data align well with the rates obtained by integration of the data generating thinned SEPP and the desired rates implied by
the CCB victimization survey.
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Figure 7: Relative number of predicted crime hot spots in Bogotá districts. Each data point represents a district-specific fraction
at a given evaluation time step (189 days) in a given simulation run (50 runs). A total of 50 hot spots are selected at each time
step. If both the true and predicted number of hot spots is zero, we set the relative count to one. Cases for which the number
of predicted hot spots is non-zero but no true hot spots are available are excluded for visualization.
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Figure 8: Fraction of prediction time steps with no true hot spots in district separated into instances with predicted and no
predicted hot spots. Ratios are computed over all evaluation time steps (189 days) and all simulation runs (50 runs) with 50
hot spots selected at each step.
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Figure 9: Absolute number of overpredicted hot spots over all evaluation time steps (189 days) and all simulation runs (50
runs) with 50 hot spots selected at each step.
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Figure 10: True crime thresholds for hot spot selection in Bogotá districts. Each point corresponds to an evaluation time step
(189 days) and a simulation run (50 runs). A total of 50 hot spots is selected at each step, and cases in which no hot spot is
predicted within the district are omitted for visualization.
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